



### **Middle East to India Deepwater Pipeline**

#### **Progress Update Meeting with NIGEC**

6th and 7th February 2011

## NIGEC Progress Update FEB 2011



SAGE

- 1. Introductions
- 2. Progress of Conceptual design studies
  - I. Completed studies
  - II. Ongoing and Planned Studies for 2011
  - III. Schedule for 2011 Activities
  - IV. Project Schedule
- 3. Example Study Results
- 4. CastorOne Visit
- 5. AOB

# The SAGE Project – Key team members **SAGE**

| Mr. T.N.R. Rao         | <ul> <li>Former Petroleum Secretary, Govt. of India and "Architect of the Oman-India Pipeline"</li> <li>Chairman of the SAGE Advisory Board</li> <li>Founder Chairman, Hydrocarbons Education &amp; Research Society, Indian School of<br/>Petroleum</li> <li>Founder Chairman – University of Petroleum &amp; Energy Studies</li> </ul>                                 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subodh Jain            | <ul> <li>Director: INOX-AIR PRODUCTS Ltd.</li> <li>Director: South Asia Gas Enterprise PVT Ltd</li> <li>Director: Siddho Mal &amp; Sons, New Delhi</li> <li>Former Senior Advisor to original Oman-India Pipeline team</li> </ul>                                                                                                                                        |
| Peter M Roberts        | <ul> <li>Director: South Asia Gas Enterprise PVT Ltd</li> <li>Managing Director: VerdErg Ltd, London</li> <li>Former Project Director of original Oman-India Pipeline</li> <li>Former Director Project &amp; Construction Services at JP Kenny and Managing Director INTEC (UK)</li> </ul>                                                                               |
| Dr Herman Franssen     | <ul> <li>Senior Consultant to SAGE</li> <li>Member of the SAGE Advisory Board.</li> <li>President, International Energy Associates, USA</li> <li>Former Economic Advisor to the Oman-India Pipeline project</li> <li>Former Economic Advisor to the Sultanate of Oman, Ministry of Petroleum</li> </ul>                                                                  |
| lan Nash               | <ul> <li>Business Acquisition and Operations Director, Peritus International (UK) Ltd.</li> <li>Managing Director INTECSEA (UK) Ltd.</li> <li>Engineering Manager for MEDGAZ FEED.</li> <li>Engineering Manager (Saipem Inc) for Canyon Express design EPIC.</li> <li>Project Manager (SASP UK) for Europipe 2, 42-inch 650 Km Gas Trunkline detailed design.</li> </ul> |
| Dr Alastair Walker FRS | <ul> <li>Leading International Expert on Marine Pipeline Engineering</li> <li>Senior Consultant to SAGE</li> <li>Member of the SAGE Advisory Board</li> <li>Professor Emeritus, University of Surrey UK</li> <li>Visiting Professor, University College London</li> </ul>                                                                                                |

## The SAGE Project – Key Partners

#### MOUs/Agreements to Co-operate in developing SAGE have been signed with:

SAGE

- Indian Oil Corporation
- Oman Ministry of Oil and Gas
- GAIL
- NIGEC
- Engineers India Ltd
- Peritus International (UK) Ltd.
- INTECSEA Engineering (UK) Ltd.
- Saipem spa Milan
- Heerema Marine Contractors, Leiden.
- CORUS steel, UK
- WELSPUN
- FUGRO GeoConsulting Ltd.UK
- Det Norske Veritas, Oslo

### Gas Routes to India





February 2011





- Design Basis definition
- Flow Assurance Studies
- Mechanical Design
- Onshore Compression Station Definition
- Offshore Compression Station Definition
- Quantified Risk Assessment OIP Update
- Geohazard and Fault Crossing Assessment Phase 1
- Metocean data Phase 1
- GIS Data collection Phase 1





- Geohazard and Fault Crossing Assessment Phase 2 (Ongoing)
- Metocean data Phase 2 (Ongoing)
- GIS Data collection (Ongoing)
- Riser and Subsea By-Pass definition (Ongoing)
- Pipeline Intervention Review (Ongoing)
- Vessel & Equipment Capabilities review (Ongoing)
- Onshore Compression Station review (Planned)
- Offshore Layout Optimisation (Planned)
- Insurance Risk Review (Planned)
- Survey Definition and scope of work (Planned)
- Define Survey ITT and tender (Planned)
- Environmental Statement (Planned)
- Establish no Hydrotest principle (Planned)
- Emergency Repair Equipment Review (Planned)
- Examine the effect of moderate heat treatment (Planned)



### Schedule for 2011



|     | De                                                        | velopm   | ent Act  | tivitie | es 20 | 10-2 | 011 |     |     |     |     |     |     |     |     |     |     |
|-----|-----------------------------------------------------------|----------|----------|---------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| No. | Activity                                                  | Who      | Status   | Nov     | Dec   | Jan  | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| 1   | Project Management                                        | Peritus  | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 2   | Route Study Oversight                                     | Peritus  | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 3   | QRA Update                                                | Peritus  | Complete |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 4   | Pipeline intervention review                              | Peritus  | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 5   | Equipment capabilities review                             | Peritus  | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 6   | Riser and Subsea Bypass definition                        | Peritus  | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
|     | EPRS Status Update (Medgaz, Transmed, Bluestream and      |          |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 7   | Greenstream projects).                                    | Peritus  |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 8   | Prequalify Indian pipe mills                              | Sage/Per |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
|     | Prepare comprehensive cost estimates for each routing     |          |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 9   | option and diameter /compression combinations.            | Peritus  |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 10  | Prepare scope of work for FEED contracts & Tender         | Peritus  |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 11  | Prepare Survey ITT and Tender                             | Peritus  |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 12  | Route Corridor Desk Study Phase 1                         | Fugro    | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 13  | Route Corridor Desk Study Phase 2                         | Fugro    | Ongoing  |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 14  | Establish no Hydrotest principle with DNV                 | DnV      |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 15  | Insurance Risk (DnV cover at commercial rates)            | DnV      |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
|     | Examine the effect of moderate heat treatment on collapse | Wellspun |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 16  | strength of the pipe                                      | /Corus   |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 17  | Continue economic modelling                               | SAGE     |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 18  | Environmental Baseline Survey                             | Fugro/M  |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 19  | Preliminary Environmental Statement.                      | Fugro/M  |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 20  | Onshore Compression Verification                          | Petrofac |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 21  | Offshore Layout Optimisation                              | Petrofac |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |
| 22  | Receiving Terminal Definition                             | Petrofac |          |         |       |      |     |     |     |     |     |     |     |     |     |     |     |



SAGE

| S.<br>Midd<br>Deep | AGE<br>le East to Inda<br>wwater Pipeline        | SAGE<br>Middle East to India Deepwater Pipeline<br>Development Schedule |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            | Peritus |            |                         |      |            |                       |             |  |                     |          |     |                   |
|--------------------|--------------------------------------------------|-------------------------------------------------------------------------|---------------|-------|----------------------|-----------------|---|-----------|----------------|------|---------------|----------------------|----|---|----------------------------|---------|------------|-------------------------|------|------------|-----------------------|-------------|--|---------------------|----------|-----|-------------------|
| ID                 | Task Name                                        | 2010<br>Q1<br>J F M                                                     | Q2<br>1 A M J | Q3 Q4 | 201<br>Q1<br>D J F I | 1<br>Q2<br>MAMJ |   | 201<br>Q1 | 2<br>Q2<br>MAM | Q3 ( | Q4 (<br>DND J | 013<br>21 Q2<br>FMAM | Q3 |   | 2014<br>Q1 Q2<br>J F M A M | Q3      | Q4<br>SOND | 2015<br>Q1 Q<br>J F M A | 2 Q3 | Q4<br>SONI | 2016<br>Q1<br>D J F M | Q2 (<br>AMJ |  | 20<br>24 Q1<br>NDJF | 17<br>Q2 |     | 2<br>Q4 Q<br>DNDJ |
| 1                  | SAGE Project Project Launch                      |                                                                         |               | _     |                      |                 |   |           |                |      |               |                      |    |   |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 6                  | Feasibility Studies                              | _                                                                       | -             |       | _                    |                 | • |           |                |      |               |                      |    |   |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 25                 | Prequalification Acticities                      |                                                                         |               |       |                      | -               |   |           |                |      |               |                      |    |   |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 35                 | Financing, Third Parties and Stakeholders        |                                                                         |               | -     |                      |                 |   |           |                |      |               |                      |    | - |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 38                 | Continue economic modelling to:                  |                                                                         |               | -     |                      |                 | • |           |                |      |               |                      |    |   |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 42                 | Surveys (Recognesance)                           | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 49                 | FEED                                             |                                                                         |               |       |                      |                 |   |           |                |      |               |                      | T  |   |                            |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 57                 | Prequainy indian pipe mins for pipe manufacture, |                                                                         |               |       |                      |                 |   |           |                |      |               | _                    |    |   | _                          |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 64                 | Investigate and conduct equipment trans.         | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      |    |   | •                          |         |            |                         |      |            |                       |             |  |                     |          |     |                   |
| 82                 | Detailed design                                  | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            |         |            | _                       |      |            |                       |             |  |                     |          |     |                   |
| 92                 | Tenderina                                        | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            |         | _          |                         |      |            |                       |             |  |                     |          |     |                   |
| 95                 | Firm Investment Decision FID)                    | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            |         | -          |                         | 7/03 |            |                       |             |  |                     |          |     |                   |
| 96                 | Procurement                                      | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      | -  |   |                            |         |            |                         |      | Ţ          |                       |             |  |                     |          |     |                   |
| 102                | Project Execution (Construction)                 | _                                                                       |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            |         |            | -                       |      |            |                       |             |  |                     |          |     |                   |
| 114                | Start-Up First Gas                               |                                                                         |               |       |                      |                 |   |           |                |      |               |                      |    |   |                            |         |            |                         |      |            |                       |             |  |                     |          | ¢ ( | 08/09             |



### Historical Route Options



- Historically many routes have been considered.
- All are considered to be Installable.

Water Depth (m)





# Deep Water Routes to India **SAGE**



Possible route direct from gas export landfall via Compression Platform on Sea Mount. Two shorter, smaller lines laid by existing barges can be used on this route. Note there is no 3rd Party Jurisdiction crossing. The route stays to the South to avoid expensive, difficult crossings of the Murray Ridge and Indus Fan.

February 2011



#### Indus Fan and Indian Slope



**Continental Shelf** 

Explanation

INDIA

- The Indus Fan is formed in a 2500m thick pile of sediment covering the greater part of the Arabian sea.
- It was formed by the Indus river which drains the local topography from the western Himalayas and feeds the erosional outwash into the Arabian Sea





Continental

**Continental Rise** 

PROPOSED PIPELINE ROUTE

Data artifact

February 2011



### Murray Ridge and Qualhat Seamount



SAGE

Middle Indus Fan

Lower Indus Fan

- The seamounts at the South-West end of the Murray Ridge present a near-ideal location for an in-line Compression Platform.
- These remarkable features reach to within 300m of Sea Level, as shown.
- Several examples of platforms in this water depth exist.
- Max Slope 20deg on Northern side similar to Landfalls.
- The Compression Platform will be outside of all Territorial Waters but within helicopter supply range.



# The Drive into deeper Water

SAGE



#### Completed studies – Design Basis





Peritus



SAGE

## Cable and Pipeline Survey Data





# Completed Studies – Geohazards Phase 1 SAGE



February 2011



### Completed Studies – Metocean Phase 1



#### **Environmental Parameters**

- Wave Heights
- Currents (Seabed-Surface)
- Temperatures
- Winds







## Flow Assurance Results (1)

The following line sizes have been selected for the various options considered for the Middle East to India deepwater pipeline from Chabahar to Gujarat for an export (sizing case) flowrate of 1100 MMscfd or 31.1 MMSCMD :

- CCS to OGCS, 400barg-50barg, ID=487mm
- CCS to OGCS, 400barg-200barg, ID=530mm
- OGCS to GPRT, 400barg-50barg, ID=579mm
- CCS to GPRT, 400barg-50barg, ID=610mm
- Of the two OGCS arrival pressures considered in Option 1, the high arrival pressure case is the preferred option for the following reasons:
  - By operating in dense phase, the velocities are manageable (6 m/s).
  - By operating at lower velocities the gas arrival temperature at the offshore station is approximately 7°C which is manageable.
  - By operating in Dense Phase a larger pipeline (530 mm ID) will be required.



#### Completed studies – Flow Assurance



#### Seabed Profiles, Temperatures and Pressures (MECS to GPRT)







Rich-Upset (Winter)

#### Rich-Upset (Summer)





The wall thickness design is performed in accordance with DNV-OS-F101 using DNV 485 DSAW linepipe

For long distance deep water gas transmission pipelines, linepipe material and installation costs are significant parts of the overall project cost. The base case has assumed that all possible DNV Quality Control (QC) factors have been set to their maximum criteria.

These QC criteria are described below:

Supplementary requirement U material strength factor
Fabrication factor for UOE pipe (afab) = 1.0, based on the conclusion made in the DNV technical report that a modest heat treatment during the pipe coating application can increase fabrication factor for UOE from the default value of 0.85 to 1.0.
Ovality = 0.5%



## **Completed Studies**



## Mechanical Design

Selected Wall Thicknesses (CCS to GPRT)



| KP Range<br>(km) | WD Range<br>(m) | Section<br>Length<br>(km) | Pipe ID<br>(mm) | Selected Wall<br>Thickness (mm) | Buckle<br>Arrestor<br>Required | Tonnage of<br>Steel Required<br>for Line Pipe<br>(Tonne) |  |  |
|------------------|-----------------|---------------------------|-----------------|---------------------------------|--------------------------------|----------------------------------------------------------|--|--|
| 0-6.8            | -82 - 8.8       | 6.8                       | 610             | 40.5                            | No                             | 4,418                                                    |  |  |
| 6.8 - 40         | 8.8 - 659       | 33.2                      | 610             | 32.9                            | No                             | 17,318                                                   |  |  |
| 40 - 110         | 659 - 2448      | 70                        | 610             | 32.9                            | Yes                            | 36,514                                                   |  |  |
| 110 - 770        | 2448 - 3084     | 660                       | 610             | 40.5                            | Yes                            | 428,811                                                  |  |  |
| 770 - 1150       | 3084 - 2690     | 380                       | 610             | 36.6                            | Yes                            | 221,779                                                  |  |  |
| 1150 - 1210      | 2690 - 361      | 60                        | 610             | 32.9                            | Yes                            | 31,298                                                   |  |  |
| 1210 - 1317.5    | 361 - 1.5       | 107.5                     | 610             | 32.9                            | No                             | 56,075                                                   |  |  |
| 1317.5 - 1318    | 1.5 - 0         | 0.5                       | 610             | 40.5                            | No                             | 325                                                      |  |  |
|                  |                 |                           |                 |                                 | Total                          | 796,537                                                  |  |  |





- Equipment Lists
- PFD's
- UFD's

- Weight Take-off

SAGE

- Layouts
- Cost Estimate





### **Onshore Equipment**



| EQUIPMENT NO.  | DESCRIPTION                  | SIZE(LXWXH OR IDXT/T) |              |                             |                      |
|----------------|------------------------------|-----------------------|--------------|-----------------------------|----------------------|
| 100-X-001      | PIG RECEIVER                 | 0.7M X 11.40M         |              |                             |                      |
| 100-X-002      | NATURAL GAS METERING PKG.    | 3.0M X 2.0M X 1.0M    |              |                             |                      |
| 100-V-101/201  | INLET SEPARATOR              | 3.7M X 11.0M          | 230-X-001    | FLARE STACK                 | HOLD                 |
| 130-X-001      | EXPORT GAS METERING PKG.     | 3.0M X 2.0M X 1.0M    | 230-X-002    | FLARE TIP                   | HOLD                 |
| 130-X-002      | PIG LAUNCHER                 | 0.8M X 7.3M           | 230-X-003    | FLARE IGNITION SYSTEM       | HOLD                 |
| 110-C-101/201  | TEG CONTRACTOR               | 3.25M X 9.0M          | 230-V-001    | FLARE K.D.DRUM              | HOLD                 |
| 110-X-002      | TEG REGENERATION PACKAGE     | 12.0M X 5.0M          | 230-E-001    | FLARE K.D.DRUM HEATER       | HOLD                 |
| 120-V-101/201  | IST STAGE COMP. SUCTION DRUM | 3.4M X 5.1M           | 240-T-001A/B | DIESEL BULK STORAGE TANK    | 2.0M X 2.0M X 1.5M   |
| 120-K-101/201  | IST STAGE COMPRESSOR         | 24.0M X 3.2M X 3.8M   | 240-X-003    | DIESEL FILTR./COALESCER PKG | HOLD                 |
| 120-E-101/201  | IST STAGE COMP. AFTERCOOLER  | 44.8M X 12.0M         | 240-P-001A/B | DIESEL TRANSFER PUMP        | 1.0M X 0.8M X 0.8M   |
| 120-V-102/202  | 2ND STAGE COMP. SUCTION DRUM | 2.6M X 4.1M           | 250-T-001    | FIRE WATER TANK             | 25.0M X 10.0M        |
| 120-K-102/202  | 2ND STAGE COMPRESSOR         | 24.0M X 3.2M X 3.8M   | 250-P-002A/B | FIRE WATER JOCKEY PUMP      | 1.2M X 1.4M X 0.4M   |
| 120-E-102/202  | 2ND STAGE COMP. AFTERCOOLER  | 31.8M X 12.0M         | 250-P-001A/B | FIRE WATER PUMP             | 1.3M X 3.1M X 1.4M   |
| 200-X-001      | FUEL GAS METERING PKG.       | 3.0M X 2.0M X 1.0M    | 260-V-001    | CLOSED DRAINS DRUM          | 2.3M X 6.9M          |
| 200-V-001      | LP FUEL GAS K.O. DRUM        | 1.2M X 2.6M           | 260-P-001    | CLOSED DRAINS DRUM PUMP     | 3.0M X 1.5M X 1.5M   |
| 200-V-002      | HP FUEL GAS K.O. DRUM        | 0.86M X 2.5M          | 260-T-001    | HAZARDOUS OPEN DRAIN TANK   | 3.0M X 2.5M X 1.5M   |
| 200-E-001      | LP FUEL GAS HEATER           | 0.74M X 1.4M          | 260-P-002    | HAZARD, OPEN DRAIN TK, PUMP | 3.0M X 1.5M X 1.5M   |
| 200-E-002      | HP FUEL GAS HEATER           | 0.74M X 1.4M          | 280-X-001    | POTABLE WATER MAKER PKG.    | HOLD                 |
| 200-F-001A/B   | LP FUEL GAS FILTER           | 0.5M X 1.0M           | 280-T-001    | POTABLE WATER TANK          | HOLD                 |
| 200-F-002A/B   | HP FUEL GAS FILTER           | 0.5M X 1.0M           | 280-P-001A/B | POTABLE WATER PUMP          | HOLD                 |
| 210-X-001A/B/C | INSTRUMENT AIR COMP. PKG     | 2.3M X 7.3M X2.0M     | 280-X-002    | POTABLE WTR STERILLI. PKG   | HOLD                 |
| 210-V-001      | INST. AIR RECEIVER           | 1.4M X 4.2M           | 280-X-003    | HOT WTR CALORIFI, PKG       | HOLD                 |
| 210-V-002      | PLANT AIR RECEIVER           | 2.1M X 6.5M           | 290-X-001    | NITROGEN GENERATION PKG     | 2.0M X 2.0M X 3.0M   |
| 220-X-001A/B   | GAS TURBINE POWER GEN PKG.   | 8.5M X 2.5M X 3.0M    | 290-V-001    | NITROGEN RECEIVER           | 1.5M X 4.6M          |
| 220-X-002      | EMER. POWER DIESEL GEN PKG.  | 3.4M X 2.0M X 2.1M    | 320-X-001    | METHANOL INJECTION PACKAGE  | 10.0M X 11.0M X 3.0M |



**Concept Definition** 

- Equipment Lists Weight Take-off

- PFD's

- Layouts

- UFD's

**Cost Estimate** \_\_\_\_





### Offshore Equipment



|                | EQUIPMENT LIST                |                       | 240-X-002      | DIESEL LOADING HOSE           | INCLUDED          |
|----------------|-------------------------------|-----------------------|----------------|-------------------------------|-------------------|
| EQUIPMENT NO.  | DESCRIPTION                   | SIZE(LXWXH OR [DXT/T) | 240-T-001/002  | DIESEL BUIK STORAGE TANK      | IN CRANE PEDESTAL |
| 100-X-001      | PIG RECEIVER                  | 0.7 X 11.40           | 240-P-001/002  | DIESEL TRANSEER PLIMP         | 1.6 X 0.8 X 0.8   |
| 100-X-002      | INLET GAS METERING PKG.       | 3.0 X 2.0 X 1.0       | 240-X-003/004  | DIESEL FILTR, /COALESCER PKG  | 1.5 X 1.0 X 1.0   |
| 100-V-101/201  | INLET SEPERATOR               | 3.66 X 11.00          | 250-X-001A/B   | EIRE WATER PLIMP PKG          | 1.8 X 6.8 X 2.8   |
| 120-X-001      | EXPORT GAS METERING PKG.      | 3.0 X 2.0 X 1.0       | 250-C-001A/B   | FIRE WATER PUMP CAISSON       |                   |
| 120-X-002      | PIG LAUNCHER                  | 0.8 X 7.30            | 260-V-001      | CLOSED DRAINS DRUM            | 1.6 X 4.80        |
| 110-V-101/201  | IST STAGE COMP, SUCTION DRUM  | 3.35 X 5.10           | 260-P-001      | CLOSED DRAINS DRUM PUMP       | 2.0 X 1.2 X 1.0   |
| 110-K-101/201  | IST STAGE COMPRESSOR          | 19.0 X 3.2 X 3.8      | 260-T-001      | HAZARDOUS OPEN DRAIN TANK     | 5.0 X 1.75 X 1.45 |
| 110-K-102/202  | 2ND STAGE COMPRESSOR          | 19.0 X 3.2 X 3.8      | 260-P-003      | HAZARD, OPEN DRAIN TK, PUMP   | 0.6 X 1.0         |
| 110-E-101/201  | IST STAGE COMP, DISCH, COOLER | 1.91X 8.0             | 260-0-002      | HAZARD, OPEN DRAIN CAISSON    |                   |
| 110-V-102/202  | 2ND STAGE COMP. SUCTION DRUM  | 2.59 X 4.10           | 260-P-004      | HAZ, OPEN DRN CAISSON PUMP    | 0.6 X 1.0         |
| 110-E-102/202  | 2ND STAGE COMP, DISCH, COOLER | 2.2 X 8.0             | 260-C-001      | NON HAZARD, OPEN DR. CAISSON  |                   |
| 200-X-001      | FUEL GAS METERING PKG.        | 3.0 X 2.0 X 1.0       | 260-P-002      | NON HAZ, OP DRN CAISSON PUMP  | 0.6 X 1.0         |
| 200-V-001      | LP FUEL GAS K.O. DRUM         | 1.22 X 2.60           | 270-P-001A/B/C | SEAWATER LIFT PLIMP           | 3.0 X 0.5         |
| 200-V-002      | HP FUEL GAS K.U. DRUM         | 0.86 X 2.50           | 270-C-001A/B/C | SEAWATER LIFT PUMP CAISSON    | ΗΩΙΡ              |
| 200-E-001      | LP FUEL GAS HEATER            | 0.74 X 1.35           | 270-C-002      | SEAWATER DUTFALL CAISSON      | HOLD              |
| 200-E-002      | HP FUEL GAS HEATER            | 0.14 X 1.40           | 270-X-001      | SEAWATER FILTRATION PKG       | 7.6 X 5.4 X 3.6   |
| 200-F-001A/B   |                               | 0.5 X 1.0             | 270-X-002A/B/C | HYPOCHLORIDE GENERATION PKG   | 2.5 X 1.2 X 2.5   |
| 200-F-002A/B   | THE ALD COND DKC              | 23 2 7 7 2 2 0        | 280-X-001      | POTABLE WATER MAKER           | 2.45 X 2.1 X 2.4  |
| 210-X-0018/6/0 |                               | 1 4 7 4 2             | 280-T-001      | POTABLE WATER STORAGE TANK    | 8.0 X 4.6 X 3.0   |
| 210-7-001      | DI ANT ATR RECEIVER           | 21765                 | 280-P-001A/B   | POTABLE WATER PUMP            | 1.6 X 0.8 X 0.8   |
| 220-X-001A/B   | GAS TURBINE POWER GEN PKG.    | 8.10 X 2.45 X 4.0     | 280-X-002A/B   | POTABLE WTR STERILLI. PKG     | 1.1 X 0.5 X 2.5   |
| 220-X-001      | DIESEL GENERATOR PKG.         | 67 8 2 7 8 2 6        | 280-X-003      | POTABLE WTR CALORIFI, PKG     | 3.0 X 3.0 X 2.0   |
| 230-X-001      | ELARE BOOM                    |                       | 290-X-001      | NITROGEN GENERATION PKG       | 2.0 X 2.0 X 3.0   |
| 230-X-002      | FLARE TIP                     | HOLD                  | 290-V-001      | NITROGEN RECEIVER             | 1.55 X 4.6        |
| 230-X-003      | FLARE IGNITION SYSTEM         | HOLD                  | 320-X-001      | METHANOL INJECTION SKID       | 10.0 X 11.0 X 3.0 |
| 230-V-001      | FLARE K.O.DRUM                | HOLD                  | 320-X-002      | METHANOL BUNKERING HOSE STN.  | 7.0 X 3.15 X 3.35 |
| 230-E-001      | FLARE K.O.DRUM HEATER         | 2.75 X 0.5            | _              | PEDESTAL CRANES(2 NOS)        | HOLD              |
| 240-X-001      | BUNKERING HOSE STATION        | 3.2 X 3.2 X 3.4       | -              | SEWAGE DISPOSAL CAISSON (1ND) | HOLD              |



# Completed Studies – Substructure Options **SAGE**



|                      |                      |         | 1                         | echnica              | l Drivers               | 6                           |       | Comn    | Overall              |                    |                                        |       |         |       |         |
|----------------------|----------------------|---------|---------------------------|----------------------|-------------------------|-----------------------------|-------|---------|----------------------|--------------------|----------------------------------------|-------|---------|-------|---------|
| Substructure Type    | Water Depth<br>Range | Payload | Metocean -<br>Erivronment | Riser<br>Feasibility | Offshore<br>Integration | Active<br>Seismic<br>Doctor | Score | Ranking | Reuse of<br>Existing | Maximise<br>Indian | Flexibility for<br>Future<br>Evanation | Score | Ranking | Score | Ranking |
| Semi Submersible     | 3                    | 3       | 3                         | 2                    | 3                       | 3                           | 17    | 2       | 3                    | 2                  | 2                                      | 7     | 1       | 24    | 1       |
| Tension Leg Platform | 3                    | 3       | 3                         | 3                    | 3                       | 3                           | 18    | 1       | 1                    | 2                  | 1                                      | 4     | 2       | 22    | 2       |
| Fixed Jacket         | 3                    | 3       | 3                         | 3                    | 1                       | 2                           | 15    | 4       | 1                    | 3                  | 3                                      | 7     | 1       | 22    | 2       |
| Spar                 | 3                    | 3       | 3                         | 3                    | 1                       | 3                           | 16    | 3       | 1                    | 1                  | 1                                      | 3     | 3       | 19    | 3       |
| Compliant Tower      | 2                    | 3       | 3                         | 3                    | 1                       | 3                           | 15    | 4       | 1                    | 1                  | 1                                      | 3     | 3       | 19    | 3       |

## CastorOne Visit



 There is a planned visit to see Saipem's new Ultra-Deepwater Installation Vessel the CastorOne.



- Saipem spa has confirmed that the SAGE deepwater pipeline is feasible and can be installed into water 3500m deep using its new laybarge CastorONE, currently in construction.
- An MOU under which Saipem will join the SAGE Consortium has been signed.

#### CLASSIFICATION

ABS +A1 (E), pipelaying vessel, +ACCU, +DPS3, CRC, TCM, CM, ice class A0 (IA Baltic)

#### DIMENSIONS

Length (o.a.): 330 m excluding ramp/stinger and helideck Moulded breadth: 39 m Operational draft: min. 7 m, max.10 m Transit draft: 8 m approx. Displacement: 100,000 t at max. operational draft

#### PERFORMANCE

Transit speed: 13 knots Fuel consumption (transit): 80 t/day Fuel consumption (DP mode, max.): 130 t/day Bollard pull (with main propellers): 180 t Pipelaying capacity: triple joint 12 m or double joint 18 m; pipe size up to 48" (60" including coating)

#### **CARGO/TANK CAPACITY**

Clear deck area: 4,300 sq.m Fuel oil: 6,500 cu.m Fresh water: 1,500 cu.m Ballast water: 36,000 cu.m 15,000 t pipe storage in cargo holds

#### DECK EQUIPMENT

Main crane: 600 t @ 30 m, 350 t @ 46 m Pipe handling cranes: 2 x gantry cranes 52 t @ 35 m Pedestal crane: 30 t @ 30m S-Lay stern ramp: 120 m long hinged stinger composed of 3 articulated and adjustable sections Tensioners: 3 x 250 t A/R winch: 750 t Working stations: 3 welding + 4 completion Triple joint fabriction shop below deck ROVs: 2 Work Class ROVs rated for 3,000 m of water depth

#### **PROPULSION SYSTEM**

Main gensets: 8 x 8,400 kW at 600 rpm each Emergency generator: 1 x 1,200 kW Power distribution: 2 separate switchboards 11 kV Main shafts: 2 x 8,000 kW Azimuthal thrusters: 6 x 92 t Bow tunnel thrusters: 2 x 35 t Stern tunnel thrusters: 35 t

#### ACCOMMODATION

702 persons Mess room; offices; crew lifts; meeting rooms; gymnasium/recreation; television rooms

#### DYNAMIC POSITIONING SYSTEM

DP system: fully redundant, class 3 Reference system: 2 x Hipap 500 for 3,000 m of water depth; 2 x DGPS Taut wire

#### HELIDECK

Suitable for Sikorsky S-61 N

#### J-LAY TOWER

Features for future installation of a fixed tower for pipe laying in J mode through the centre moon pool

# Allseas Pieter Schelte S-Lay Vessel SAGE



#### Pieter Schelte - under construction

- S-Lay.
- Tensioners 2000t (4x500t)
- Length 382 m, Length 370 m
- Transit speed 14 knots
- Accommodation 571 men
- Dynamic positioning LR DP (AAA)
- Stinger length 170 m (558 ft)
- Total installed power 95 MW
- Pipe diameters From 6" to 68" O.D.
- Welding stations Double joint factory with 5 line-up & 2 welding stations. Mainline with 6 welding stations for double joints, 1 NDT station and 6 coating stations



#### **ALLSEAS Group S.A.**

- Contract awarded June 2010, to Daewoo Shipbuilding and Marine Engineering Co., Ltd., Korea.
- The detail design of the vessel has been completed.
- Long-lead items, such as the power generation equipment and the thrusters, were ordered in March 2007.
- Delivery of the completed vessel is foreseen for 2013.

# HMC New Deep Water Pipelay Vessel **SAGE**



#### HMC New Vessel - under construction

- J-Lay. & Reeling
- Tensioners 2000t
- Maximum pipe payload is 4,500 metric tons.
- Length 210m
- Transit speed 14 knots
- Accommodation 289 men
- Dynamic positioning DP Class 3
- Designed for Pipelay to 3500m



#### Heerema Marine Contractors.

- Contract awarded July 2010, to Daewoo Shipbuilding and Marine Engineering Co., Ltd., Korea.
- The detail design of the vessel has been completed.
- Long-lead items, such as the power generation equipment and the thrusters, were ordered in March 2007.
- Delivery of the completed vessel is foreseen for 2013.

# SAGE Pipelay Vessel (No large Cranes) SAGE

Dimensions & Displacements (Semi Hull)

Dimensions & Displacements (Ship Shape)



CAPEX for any such barge is around \$850m.

SAGE would need to set up full PMC team - but multiple lines possible for a corridor.