

Middle East to India Deepwater Pipeline

NIGEC Progress Update Meeting

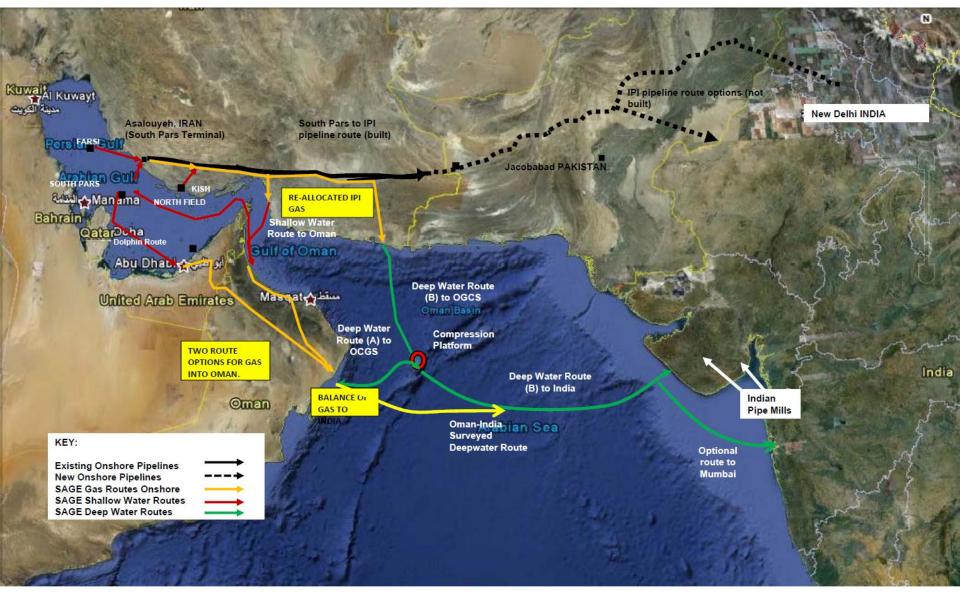
September 2011

September 2011

AGENDA

- 1. Introductions
- 2. Progress of Conceptual design studies
 - I. Completed studies
 - II. Ongoing and Planned Studies for 2011
 - III. Schedule for 2011 Activities
 - IV. Project Schedule
- 3. Example Study Results
- 4. Castorone Visit
- 5. AOB

Mr. T.N.R. Rao	 Former Petroleum Secretary, Govt. of India and "Architect of the Oman-India Pipeline" Chairman of the SAGE Advisory Board Founder Chairman, Hydrocarbons Education & Research Society, Indian School of Petroleum Founder Chairman – University of Petroleum & Energy Studies
Subodh Jain	 Director: INOX-AIR PRODUCTS Ltd. Director: South Asia Gas Enterprise PVT Ltd Director: Siddho Mal & Sons, New Delhi Former Senior Advisor to original Oman-India Pipeline team
Peter M Roberts	 Director: South Asia Gas Enterprise PVT Ltd Managing Director: VerdErg Ltd, London Former Project Director of original Oman-India Pipeline Former Director Project & Construction Services at JP Kenny and Managing Director INTEC (UK)
Dr Herman Franssen	 Senior Consultant to SAGE Member of the SAGE Advisory Board. President, International Energy Associates, USA Former Economic Advisor to the Oman-India Pipeline project Former Economic Advisor to the Sultanate of Oman, Ministry of Petroleum
Ian Nash	 Business Acquisition and Operations Director, Peritus International (UK) Ltd. Managing Director INTECSEA (UK) Ltd. Engineering Manager for MEDGAZ FEED. Engineering Manager (Saipem Inc) for Canyon Express design EPIC. Project Manager (SASP UK) for Europipe 2, 42-inch 650 Km Gas Trunkline detailed design.
Dr Alastair Walker FRS	 Leading International Expert on Marine Pipeline Engineering Senior Consultant to SAGE Member of the SAGE Advisory Board Professor Emeritus, University of Surrey UK Visiting Professor, University College London


MOUs/Agreements to Co-operate in developing SAGE have been signed with:

- Indian Oil Corporation
- Oman Ministry of Oil and Gas
- GAIL
- NIGEC
- Peritus International Ltd.
- Engineers India Ltd.
- Intecsea (UK) Ltd.
- Saipem SpA
- Heerema Marine Contractors
- Tata (CORUS) steel
- Welspun
- JindalSAW
- FUGRO GeoConsulting Ltd.
- Det Norske Veritas
- EGS Survey Pvt Ltd

Gas Routes to India

- Design Basis definition
- Flow Assurance Studies
- Mechanical Design
- Onshore Compression Station Definition
- Onshore Compression Station review
- Offshore Compression Station
- Offshore Layout Optimisation
- Quantified Risk Assessment OIP Update
- Geohazard and Fault Crossing Assessment Oman Route
- Metocean data Oman Route
- Emergency Repair Equipment
- GIS Data collection Oman Route
- Riser and Subsea By-Pass definition
- Pipeline Intervention Review
- Vessel & Equipment Capabilities review

September 2011

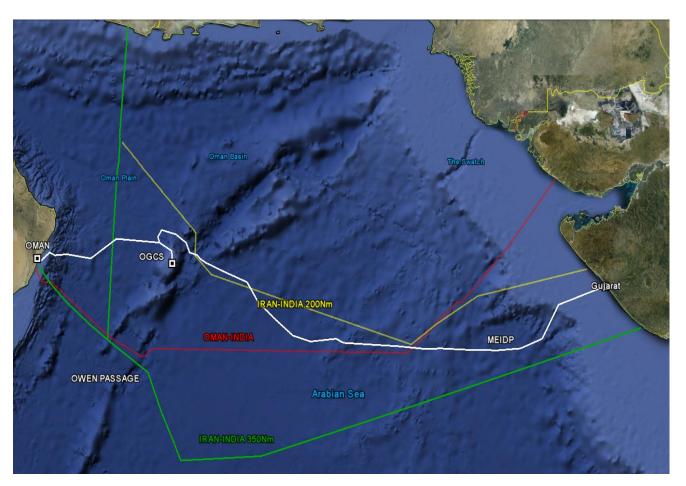
- Geohazard and Fault Crossing Assessment Iran Leg (Ongoing)
- Metocean data Iran Leg (Ongoing)
- GIS data collection Iran Leg(Ongoing)
- Reconnaissance Survey definition and scope of work (Ongoing)
- Alternative Integrity Verification (Establish no hydrotest principle Ongoing)
- Mill qualification and ring testing program (Ongoing)
- Cost Estimate Update (Ongoing)
- Master Project Schedule (Ongoing)
- Environmental Statement (Planned)
- Survey ITT and tender (Planned)

Schedule for 2011

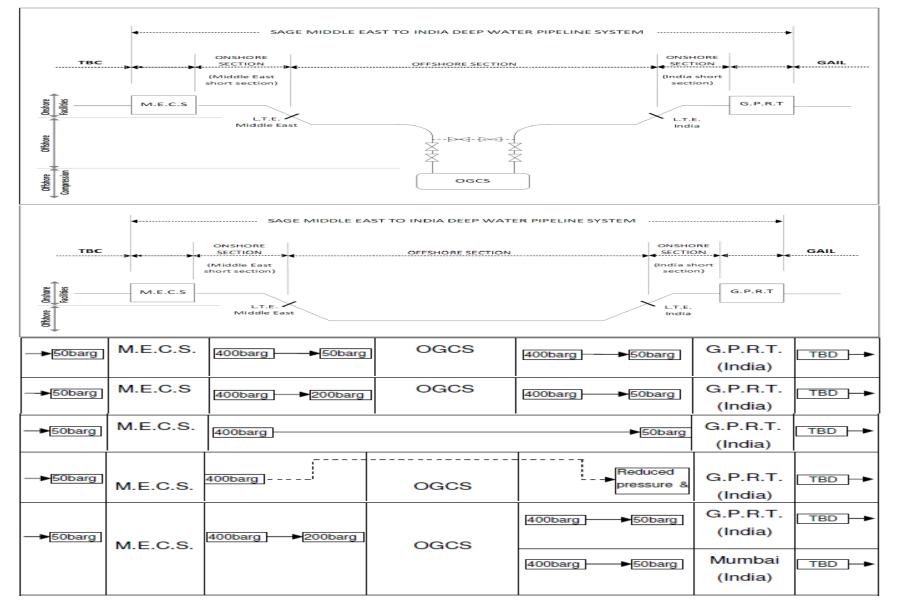
		0	Developn	nent	Activ	vities	2010)-201	.1												
No.	Activity	Who	Status	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
1	Project Management	Peritus	Ongoing																		
2	Route Study Oversight	Peritus	Ongoing																		
3	QRA Update	Peritus	Complete																		
4	Pipeline Intervention Review	Peritus	Complete																		
	Installation Capabilities Review	Peritus	Complete																		
6	Riser and Subsea By-Pass Definition	Peritus	Complete																		
7	EPRS Status Update	Peritus	Complete																		
8	Mill Qualification and Rin Testing program	Peritus, Welspun, JindalSAW	Ongoing																		
9	Cost Estimate	Peritus	Ongoing																		
10	Construction Schedule Definition	Peritus	Ongoing																		
11	Prepare Survey ITT and Tender	Peritus	Ongoing																		
12	Prepare Scope of Work for FEED Contracts and Tender	Peritus	Planned																		
13	Reconnaisance Survey	Tender	Planned																		
14	Route Corridor Desk Study Oman Leg	Fugro	Complete																		
15	Route Corridor Desk Study Iran Leg	Fugro	Ongoing																		
16	Geohazard Assessment Oman Leg	Fugro	Complete																		
17	Geohazard Assessment Iran Leg	D'Appolonia	Ongoing																		
18	Alternative Integrity Verification Study (No Hydrotest)	Peritus	Ongoing																		
19	Continue Economic Modelling	SAGE	Ongoing																		
20	Environmental Baseline Survey	Fugro/Metoc	Planned																		
21	Preliminary Environmental Statement	Fugro/Metoc	Planned																		
22	Onshore Compression Station Verification	Petrofac	Complete																		
23	Offshore Layout Optimisation	Petrofac	Complete																		
24	Receiving Terminal Definition	Petrofac	Complete																		

SAGE

L																																
ID	Task Name	2010			~	2011	<u></u>		-	2012	-	0.1	2013		100	0.	2014			1.04	2015	100	00		2016	00	100	0.	2017	<u></u>		20
					Q4					Q1 Q2				Q2												Q2						
1	SAGE Project	JFN		JAS		JIFM	AMUJ	ASL	יטואוע		I J J M		JJF		JAS		JIFM		JAS		JFN		JAD		JJFN		JAS		JFM			
'	on of the second																l							1								-
2	Project Launch		-																					1								
				•						i.			1						1					į –	i i		1					
6	Feasibility Studies					_	_	÷	-										1					1	1		1					
			1			i			İ	ľ	į.		i i						į –	į.		į.		i –	i		i i			İ	i	
28	Prequalification Acticities		1					÷			-	$\mathbf{\nabla}$	1		Ì				i i	i i		1		i –	i i		i i			ĺ		
			1			i			i	1	i		i i	i.	ĺ		ĺ		i –	i i		i i		i –	i	1	i i			İ	- i	
38	Financing, Third Parties and Stakeholders		1			_		÷	_				<u> </u>				P		į –	į.		į.		i i	i		i i			İ	i	
		_				İ				_	İ		İ	į.	Ì	į.	İ	İ	į –	į	1	į.	Ì	į –	İ	i i	İ	İ		İ	Í	
41	Continue economic modelling to:		1			İ				▼ [.	İ		į.	i.	İ	į.	İ	į	į –	į	İ	į	Ì	į –	İ	i i	İ			i	Í	
45		_	1									_	1						i i	1		1		1	i i		1					
40	Surveys (Recognesance)		1			i			- 27				i i	i.	ĺ		ĺ		i –	i i		i i		i –	i	1	i i			İ	- i	
52	FEED		1				ĺ			-			<u>i</u>	<u> </u>			ĺ		i i	1	1	1	ł	i –	i i		i i	i i		İ	1	
52	FEED		1			i			İ							T			į –	į.		į.		i –	i		i i			İ	i	
60	Prequalify Indian pipe mills for pipe manufacture,	-	1			i			İ	i			<u> </u>			L			į –	į.		į.		i i	i		i i			İ	i	
- [~]	rrequany indian pipe mins for pipe mandiacture,		1			İ	İ		İ	İ			٩	i.	İ		İ	į	į –	į	İ	į	Ì	į –	İ	i i	İ			i	Í	
63	Investigate and conduct equipment trials:	-	1							i i			1						i i	1		1		1	i i		i i	i i				
			1			i			i i	1	i		i i	i.	•		ĺ	•	i –	i i		i i		i –	i	1	i i			İ	- i	
67	Surveys (Detail)		1			İ	İ		İ	İ	İ		į.	i.	. 🖝	_	<u> </u>	į	į –	į	İ	į	Ì	į –	İ	i i	İ			i	Í	
							ĺ		İ		Ì		İ.	Ì	'		•	ĺ	İ.	ĺ		ĺ		İ.	Ì		İ.			ĺ		
85	Detailed design						ĺ		İ		Ì		İ.	Ì	- 🛡		_	_	-	-	-	-	фп –	İ.	Ì		İ.			ĺ		
			1				ĺ			i	i.		i i	i.			ĺ		i i	1	1	1	Í	i –	i i		i i	i i		İ	1	
95	Tendering		1			İ			İ	İ	İ		İ.	i.	İ		i	i	İ.	İ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ψ.	İ.	İ	1	İ.			İ	Ì	
		_	1			İ	İ		İ	İ	İ		İ	i		L.	į	i	İ	İ	İ	İ		İ.	İ	i	İ	i		i	ĺ	
98	Firm Investment Decision FID (Procurement)					İ	İ		İ	İ	İ		İ	į.	Ì	¥ 2	22/11	İ	į –	į	1	į.		į –	İ	i i	İ	İ		İ	Í	
	Decement	_					ĺ			Ì			1			_	Ì						İ		1		l.			ĺ		
99	Procurement						ĺ		ĺ		Ì		ĺ.	Ì									1	<u> </u>			İ.			ĺ		
105	Firm Investment Decision FID (Construction)	_	1				ĺ			i	i.		i i	i.			ĺ		i i	1	1	1	03/0	i 7	i i	1	i i	i i		İ	1	
105	Firm Investment Decision FID (Construction)		1			İ			İ	İ	İ		İ.	i.	İ		i	i	İ.	İ	İ	1	o U3/U	1	İ	1	İ.			İ	Ì	
106	Project Execution (Construction)	-					ĺ			İ			Ì	Ì			ĺ		1	1		1		i	i	i	i	<u>i</u>		i	i	
	rojevi Execution (construction)						ĺ				Ì																					
118	Start-Up First Gas	-					ĺ				Ì																			İ	Ì	▲ 15
							ĺ			Ì	Ì													1			-			İ	Ì	•
	·												-											-								



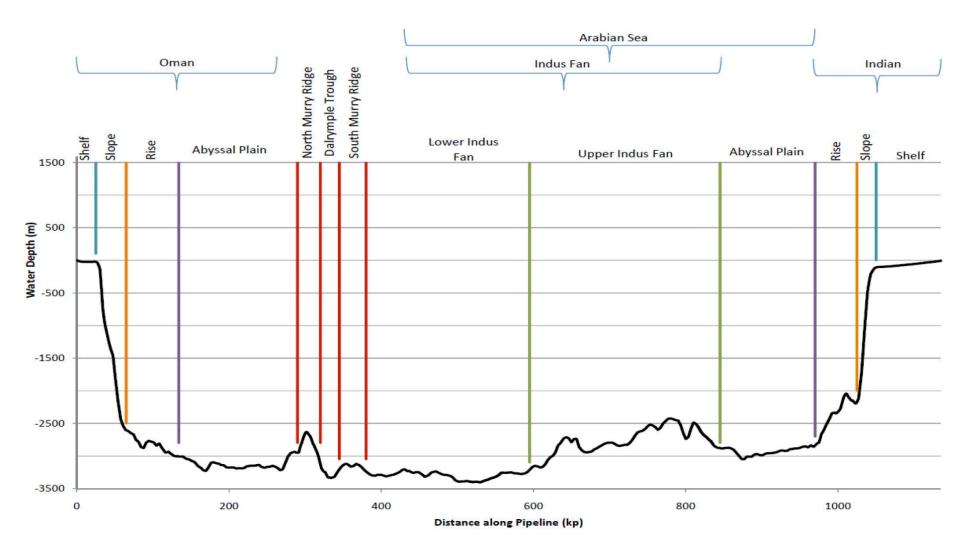
Example Study Results


- Historically many routes have been considered
 - > Oman-India 1995
 - Iran-India 1997
 - Iran-India (200NM)
 2003
 - Iran-India (350NM)
 2003
 - ➢ MEIDP 2010
- All were considered to be Installable

Completed studies – Design Basis

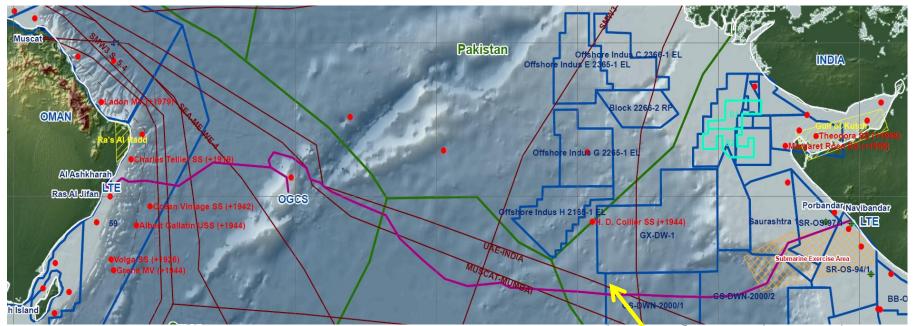
- Routing from Central Oman
 East coast near Ras Al Jifar
 and Ghudayran
- Crossing Oman Continental Shelf/Slope/Rise due west
- Crossing Central Oman Abyssal Plain
- Passing North of the Qualhat Seamount

Peritus


- Crossing the Dalrymple and Arabian Abyssal Plain to the South East
- Crossing lower reaches of the Upper Indus Fan due East
- Crossing Indian Continental Rise & Slope to North East
- Crossing Indian Continental Shelf due East

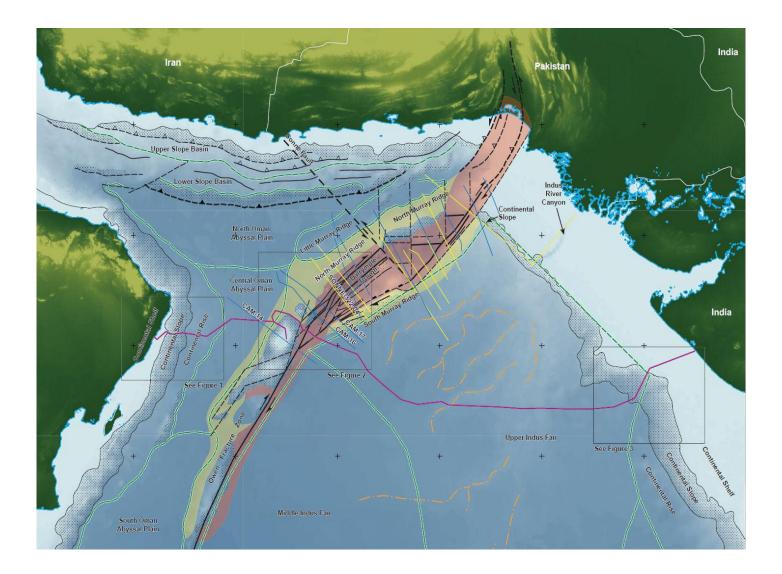
SAGE

13


14

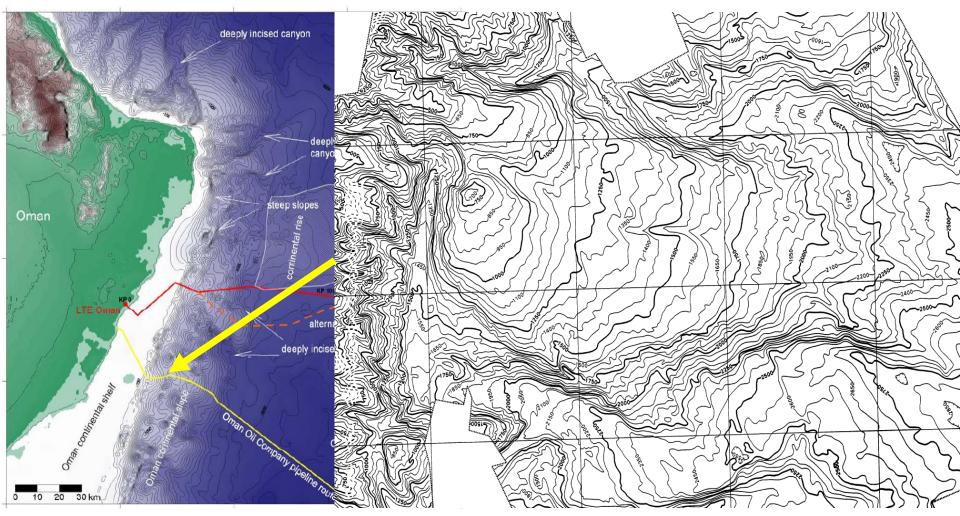
September 2011

Cable Crossings Along Route


Name	Status
ADEN-BOMBAY 2	Proposed
ADEN-BOMBAY 3	Proposed
ADEN-BOMBAY 4	Proposed
FLAG Seg H and J	Existing
FLAG Seg G and I	Proposed
SEAMEWE3 Segments 5.2, 5.3 and 5.4	Existing
SEAMEWE4	Existing
ADEN-MUSCAT	Proposed
SALALAH-MUSCAT	Existing
MUSCAT-MUMBAI	Existing
UAE-INDIA	Existing
UAE-PAKISTAN	Existing
KARACHI-MUSCAT	Proposed

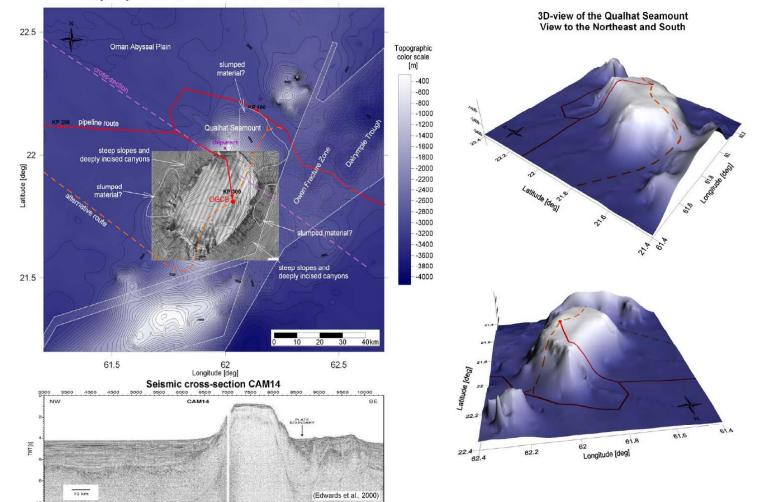
15

Peritus Morpho-Techtonic Features I

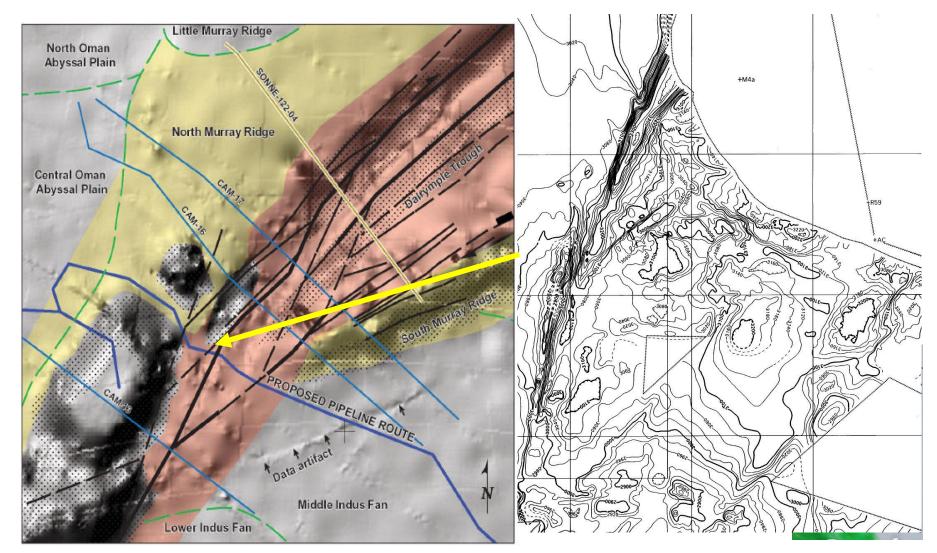


Geohazards and Features

Bathymetry and seafloor features of the Oman Continental Sheri and Siope



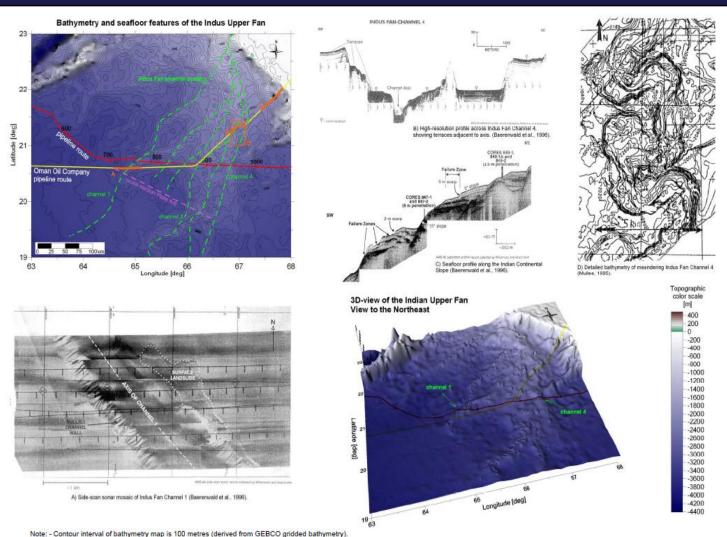
Murray Ridge and Qualhat Seamount



Bathymetry and seafloor features of the Qualhat Seamount

Notes: - Image on map is a multibeam sonar mosaic of the Qualhat Seamount (IFREMER, MARABIE cruises 2000 and 2001) - Contour interval of bathymetry is 100 metres (derived from GEBCO gridded bathymetry).

Dalrymple Trough/Owen Fracture SAGE



Peritus

Indus Fan crossing

Bathymetry and Seafloor Features of the Arabian Abyssal Plain and Indus Fan SOUTH ASIA GAS ENTERPRISE (SAGE) PIPELINE - OMAN TO INDIA

20

color scale [m] - 800

600

400

200

1200

-1400

-1600

-1800

-2000

-2200

-2400 -2600

-2800 -3000 -3200 -3400 -3600 -3800

0 -200 -400 -600 -800 -1000

deeply

incised

canyon

slumped

material

pipeline route

Arabian Abyssal Plain

Seafloor profile along Indian Continental Slope (Baerenwald et al., 1996)

68

67

deeply

incised

canyon

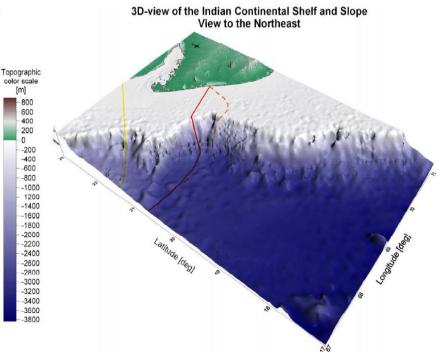
slope

slumped

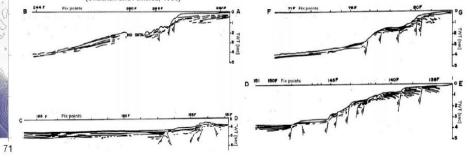
material

69

Longitude [deg]


9 deeply I incised

canyon


100 km

50 75

70

Interpreted seismic cross-sections of the Indian Continental Slope (Chauhan and Almeida, 1993)

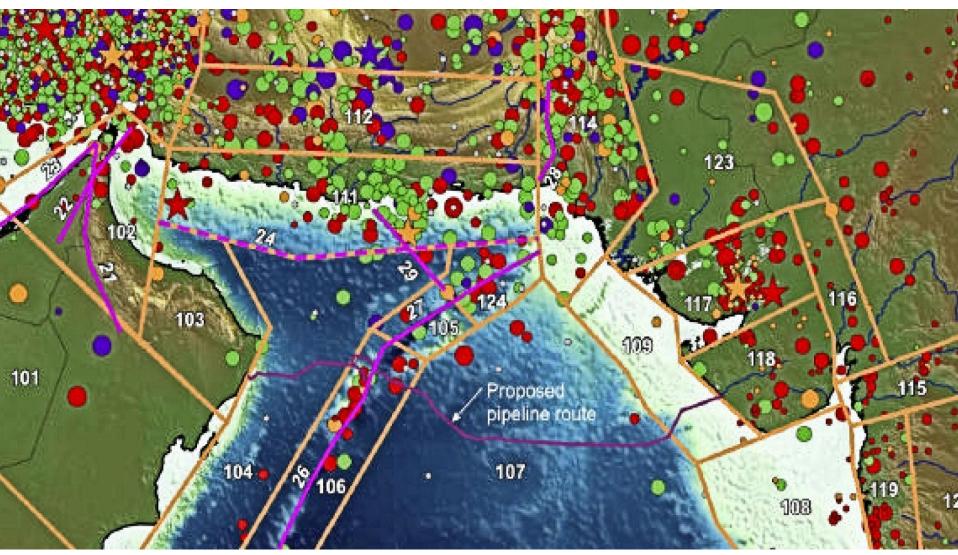
Peritus

22

21

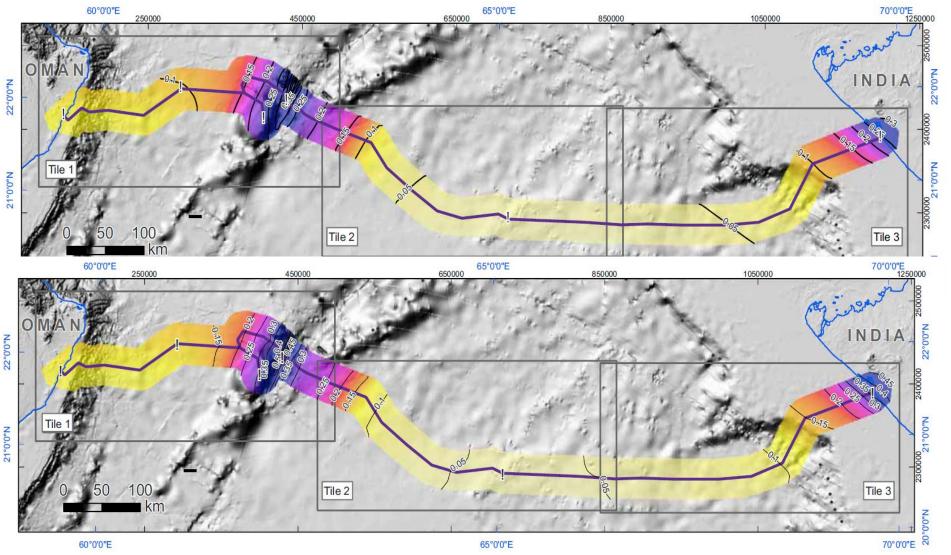
Latitude [deg]

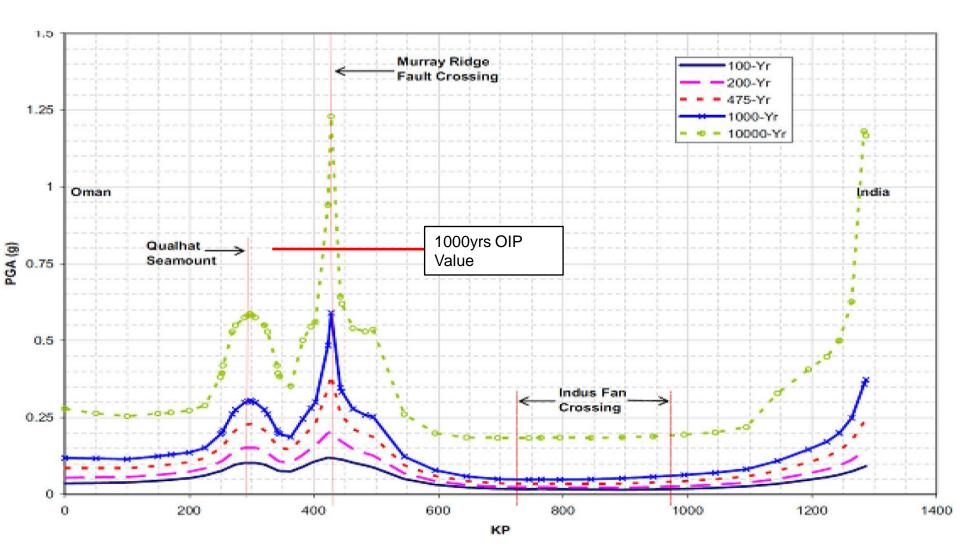
19


18

17

Seismic Events Near MEIDP

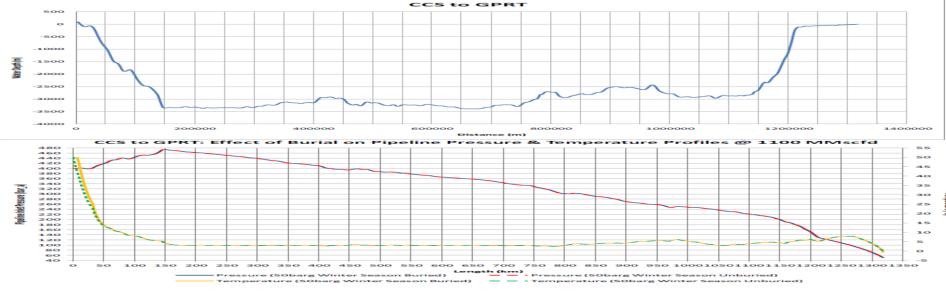

SAGE

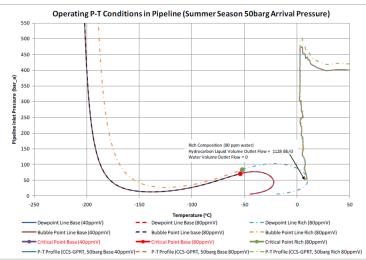

PGA Maps (475yrs & 1000yrs)

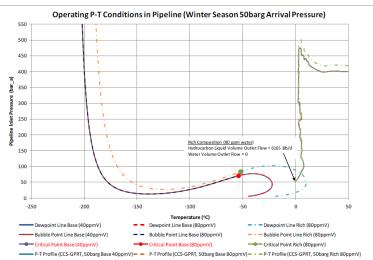
SAGE

24

26°N 0.6 Environmental Parameters_{25°N} 0.5 Wave Heights Currents (Seabed-Surface)^{24°N} 0.4 Temperatures 0.3 23°N Winds 22**°**N 0.2 21°N 0.1 20°N 26⁰N 3 25⁰N 2.5 24⁰N 2 23⁰N 1.5 22⁰N 1 21°N 0.5 20⁰N 0 September 2011 60°E 62⁰E 64⁰E 66°E 68°E 70°E


Flow Assurance Results (1)


- The following line sizes have been selected for the various options considered for the Middle East to India deepwater pipeline from Chabahar to Gujarat for an export (sizing case) flowrate of 1100 MMscfd or 31.1 MMSCMD :
 - CCS to OGCS, 400barg-50barg, ID=487mm
 - CCS to OGCS, 400barg-200barg, ID=530mm
 - OGCS to GPRT, 400barg-50barg, ID=579mm
 - CCS to GPRT, 400barg-50barg, ID=610mm
- Of the two OGCS arrival pressures considered in Option 1, the high arrival pressure case is the preferred option for the following reasons:
 - By operating in dense phase, the velocities are manageable (6 m/s).
 - By operating at lower velocities the gas arrival temperature at the offshore station is approximately 7°C which is manageable.
 - By operating in Dense Phase a larger pipeline (530 mm ID) will be required.


Completed studies – Flow Assurance

Seabed Profiles, Temperatures and Pressures (MECS to GPRT)

Rich-Upset (Winter)

September 2011 Rich-Upset (Summer)

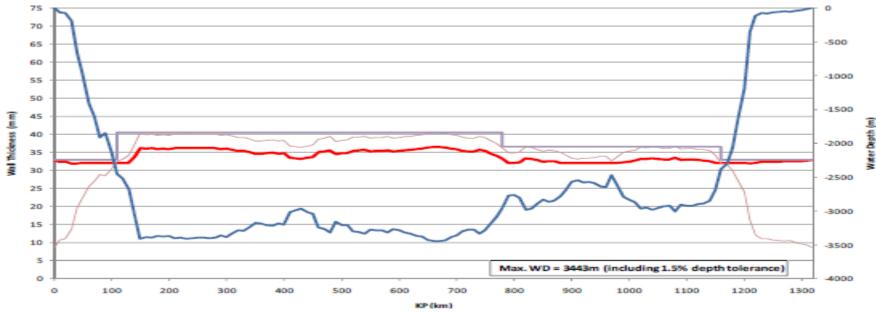
Peritus

The wall thickness design is performed in accordance with DNV-OS-F101 using DNV 485 DSAW linepipe

For long distance deep water gas transmission pipelines, linepipe material and installation costs are significant parts of the overall project cost. The base case has assumed that all possible DNV Quality Control (QC) factors have been set to their maximum criteria.

These QC criteria are described below:

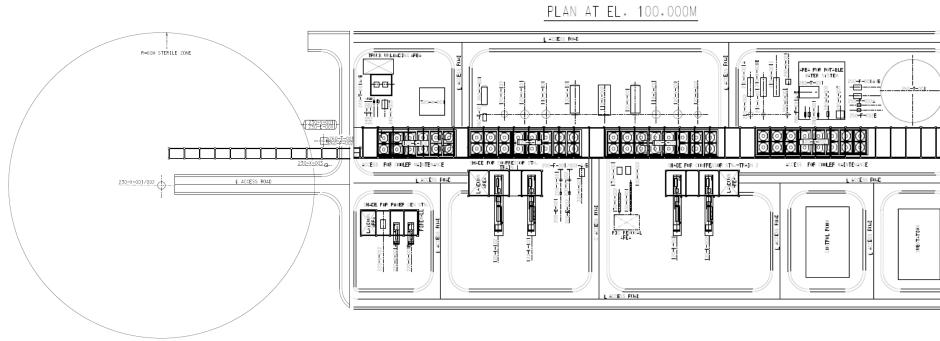
Supplementary requirement U material strength factor
Fabrication factor for UOE pipe (afab) = 1.0, based on the conclusion made in the DNV technical report that a modest heat treatment during the pipe coating application can increase fabrication factor for UOE from the default value of 0.85 to 1.0.


•Ovality = 0.5%

Mechanical Design

Selected Wall Thicknesses (CCS to GPRT)

KP Range (km)	WD Range (m)	Section Length (km)	Pipe ID (mm)	Selected Wall Thickness (mm)	Buckle Arrestor Required	Tonnage of Steel Required for Line Pipe (Tonne)
0 - 6.8	-82 - 8.8	6.8	610	40.5	No	4,418
6.8 - 40	8.8 - 659	33.2	610	32.9	No	17,318
40 - 110	659 - 2448	70	610	32.9	Yes	36,514
110 - 770	2448 - 3084	660	610	40.5	Yes	428,811
770 - 1150	3084 - 2690	380	610	36.6	Yes	221,779
1150 - 1210	2690 - 361	60	610	32.9	Yes	31,298
1210 - 1317.5	361 - 1.5	107.5	610	32.9	No	56,075
1317.5 - 1318	1.5 - 0	0.5	610	40.5	No	325
					Total	796,537



Concept Definition

- Equipment Lists

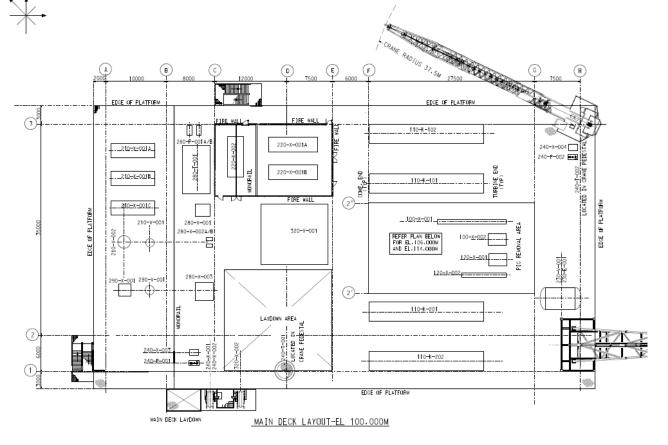
- PFD's
- UFD's

- Weight Take-off
- Layouts
- Cost Estimate

September 2011

Onshore Equipment

EQUIPMENT NO.	DESCRIPTION	SJZE(LXWXH OR IDXT/T)			
100-X-001	PIG RECEIVER	0.7M X 11.40M			
100-X-002	NATURAL GAS METERING PKG.	3.0M X 2.0M X 1.0M			
100-V-101/201	INLET SEPARATOR	3.7M X 11.0M	230-X-001	FLARE STACK	HOLD
130-X-001	EXPORT GAS METERING PKG.	3.0M X 2.0M X 1.0M	230-X-002	FLARE TIP	HOLD
130-X-002	PIG LAUNCHER	0.8M X 7.3M	230-X-003	FLARE IGNITION SYSTEM	HOLD
110-C-101/201	TEG CONTRACTOR	3.25M X 9.0M	230-V-001	FLARE K.D.DRUM	HOLD
110-X-002	TEG REGENERATION PACKAGE	12.0M X 5.0M	230-E-001	FLARE K.O.DRUM HEATER	HOLD
120-V-101/201	IST STAGE COMP. SUCTION DRUM	3.4M X 5.1M	240-T-001A/B	DIESEL BULK STORAGE TANK	2.0M X 2.0M X 1.5M
120-K-101/201	IST STAGE COMPRESSOR	24.0M X 3.2M X 3.8M	240-X-003	DIESEL FILTR,/COALESCER PKG	HOLD
120-E-101/201	IST STAGE COMP. AFTERCOOLER	44.8M X 12.0M	240-P-001A/B	DIESEL TRANSFER PUMP	1.0M X 0.8M X 0.8M
120-V-102/202	2ND STAGE COMP. SUCTION DRUM	2.6M X 4.1M	250-T-001	FIRE WATER TANK	25.0M X 10.0M
120-K-102/202	2ND STAGE COMPRESSOR	24.0M X 3.2M X 3.8M	250-P-002A/B	FIRE WATER JOCKEY PUMP	1.2M X 1.4M X 0.4M
120-E-102/202	2ND STAGE COMP. AFTERCOOLER	31.8M X 12.0M	250-P-001A/B	FIRE WATER PUMP	1.3M X 3.1M X 1.4M
200-X-001	FUEL GAS METERING PKG.	3.0M X 2.0M X 1.0M	260-V-001	CLOSED DRAINS DRUM	2.3M X 6.9M
200-V-001	LP FUEL GAS K.O. DRUM	1.2M X 2.6M	260-P-001	CLOSED DRAINS DRUM PUMP	3.0M X 1.5M X 1.5M
200-V-002	HP FUEL GAS K.O. DRUM	0.86M X 2.5M	260-T-001	HAZARDOUS OPEN DRAIN TANK	3.0M X 2.5M X 1.5M
200-E-001	LP FUEL GAS HEATER	0.74M X 1.4M	260-P-002	HAZARD, OPEN DRAIN TK, PUMP	3.0M X 1.5M X 1.5M
200-E-002	HP FUEL GAS HEATER	0.74M X 1.4M	280-X-001	POTABLE WATER MAKER PKG.	HOLD
200-F-001A/B	LP FUEL GAS FILTER	0.5M X 1.0M	280-T-001	POTABLE WATER TANK	HOLD
200-F-002A/B	HP FUEL GAS FILTER	0.5M X 1.0M	280-P-001A/B	POTABLE WATER PUMP	HOLD
210-X-001A/B/C	INSTRUMENT AIR COMP. PKG	2.3M X 7.3M X2.0M	280-X-002	POTABLE WTR STERILLI. PKG	HOLD
210-V-001	INST. AIR RECEIVER	1.4M X 4.2M	280-X-003	HOT WTR CALORIFI. PKG	HOLD
210-V-002	PLANT AIR RECEIVER	2.1M X 6.5M	290-X-001	NITROGEN GENERATION PKG	2.0M X 2.0M X 3.0M
220-X-001A/B	GAS TURBINE POWER GEN PKG.	8.5M X 2.5M X 3.0M	290-V-001	NITROGEN RECEIVER	1.5M X 4.6M
220-X-002	EMER. POWER DIESEL GEN PKG.	3.4M X 2.0M X 2.1M	320-X-001	METHANOL INJECTION PACKAGE	10.0M X 11.0M X 3.0M


Concept Definition

- Equipment Lists
- PFD's
- UFD's

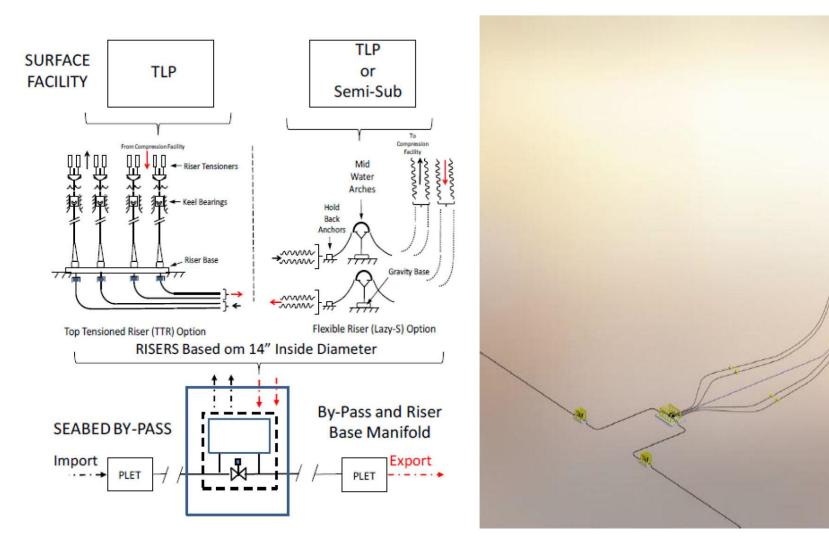
- Weight Take-off

SAGE

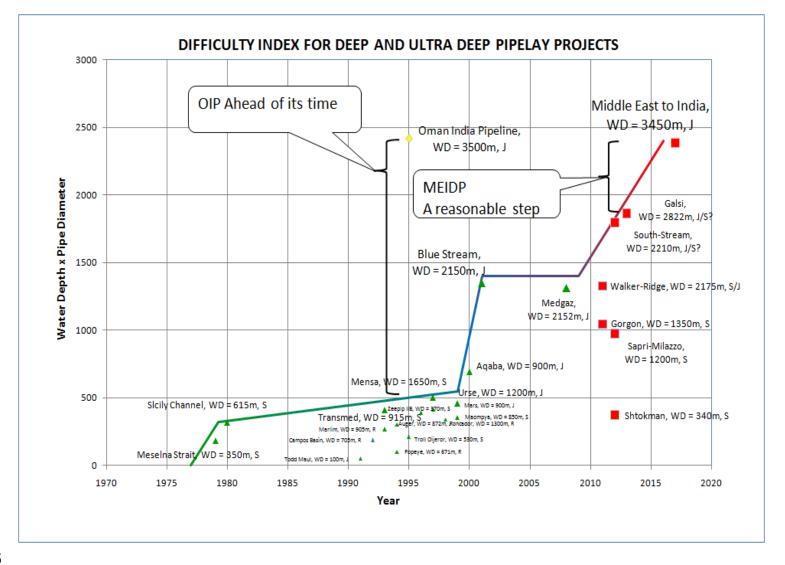
- Layouts
- Cost Estimate

Offshore Equipment

			L 10 11 001		
	EQUIPMENT LIST		240-X-002	DIESEL LOADING HOSE	INCLUDED
EQUIPMENT NO.	DESCRIPTION	SIZE(LXWXH OR (DXT/T)	240-T-001/002	DIESEL BULK STORAGE TANK	IN CRANE PEDESTAL
100-X-001	PIG RECEIVER	0.7 X 11.40	240-P-001/002	DIESEL TRANSEER PUMP	1.6 X 0.8 X 0.8
100-X-002	INLET GAS METERING PKG.	3.0 X 2.0 X 1.0	240-X-003/004	DIESEL FILTR./COALESCER PKG	1.5 X 1.0 X 1.0
100-V-101/201	INLET SEPERATOR	3.66 X 11.00	250-X-001A/B	FIRE WATER PUMP PKG	1.8 X 6.8 X 2.8
120-X-001	EXPORT GAS METERING PKG.	3.0 X 2.0 X 1.0	250-C-001A/B	FIRE WATER PUMP CAISSON	HOLD
120-X-002	PIG LAUNCHER	0.8 X 7.30	260-V-001	CLOSED DRAINS DRUM	1.6 X 4.80
110-V-101/201	IST STAGE COMP. SUCTION DRUM	3.35 X 5.10	260-P-001	CLOSED DRAINS DRUM PUMP	2.0 X 1.2 X 1.0
110-K-101/201	IST STAGE COMPRESSOR	19.0 X 3.2 X 3.8	260-T-001	HAZARDOUS OPEN DRAIN TANK	5.0 X 1.75 X 1.45
110-K-102/202	2ND STAGE COMPRESSOR	19.0 X 3.2 X 3.8	260-P-003	HAZARD, OPEN DRAIN TK, PUMP	0.6 X 1.0
110-E-101/201	IST STAGE COMP, DISCH, COOLER	1.91X 8.0	260-0-002	HAZARD. OPEN DRAIN CAISSON	HOLD
110-V-102/202	2ND STAGE COMP. SUCTION DRUM	2.59 X 4.10	260-P-004	HAZ. OPEN DRN CAISSON PUMP	0.6 X 1.0
110-E-102/202	2ND STAGE COMP. D[SCH. COOLER	2.2 X 8.0	260-C-001	NON HAZARD, OPEN DR. CAISSON	HOLD
200-X-001	FUEL GAS METERING PKG.	3.0 X 2.0 X 1.0	260-P-002	NON HAZ, OP DRN CAISSON PUMP	0.6 X 1.0
200-V-001	LP FUEL GAS K.O. DRUM	1.22 X 2.60	270-P-001A/B/C	SEAWATER LIFT PUMP	3.0 X 0.5
200-V-002	HP FUEL GAS K.O. DRUM	0.86 X 2.50	270-C-001A/B/C	SEAWATER LIFT PUMP CAISSON	HOLD
200-E-001	LP FUEL GAS HEATER	0.74 X 1.35	270-C-002	SEAWATER DUTFALL CAISSON	HOLD
200-E-002	HP FUEL GAS HEATER	0.74 X 1.40	270-X-001	SEAWATER FILTRATION PKG	7.6 X 5.4 X 3.6
200-F-001A/B	LP FUEL GAS FILTER	0.5 X 1.0	270-X-002A/B/C	HYPOCHLORIDE GENERATION PKG	2.5 X 1.2 X 2.5
200-F-002A/B	HP FUEL GAS FILTER	0.5 X 1.0	280-X-001	POTABLE WATER MAKER	2.45 X 2.1 X 2.4
210-X-001A/B/C	INST. AIR COMP. PKG	2.3 X 7.3 X 2.0	280-T-001	POTABLE WATER STORAGE TANK	8.0 X 4.6 X 3.0
210-V-001	INST. AIR RECEIVER	1.4 X 4.2		POTABLE WATER STURAGE TANK	1.6 X 0.8 X 0.8
210-V-002	PLANT AIR RECEIVER	2.1 X 6.5	280-P-001A/B	POTABLE WATER POMP POTABLE WTR STERILLI, PKG	1.1 X 0.5 X 2.5
220-X-001A/B	GAS TURBINE POWER GEN PKG.	8.10 X 2.45 X 4.0	280-X-002A/B	POTABLE WIR STERILLI, PKG	
220-X-002	DIESEL GENERATOR PKG.	6.7 X 2.7 X 2.6	280-X-003		3.0 X 3.0 X 2.0
230-X-001	FLARE BOOM	HOLD	290-X-001	NITROGEN GENERATION PKG	2.0 X 2.0 X 3.0
230-X-002	FLARE TIP	HOLD	290-V-001	NITROGEN RECEIVER	1.55 X 4.6
230-X-003	FLARE IGNITION SYSTEM	HOLD	320-X-001	METHANOL INJECTION SKID	10.0 X 11.0 X 3.0
230-V-001	FLARE K.O.DRUM	HOLD	320-X-002	METHANOL BUNKERING HOSE STN.	7.0 X 3.15 X 3.35
230-E-001	FLARE K.O.DRUM HEATER	2.75 X 0.5	_	PEDESTAL CRANES(2 NOS)	HOLD
240-X-001	BUNKERING HOSE STATION	3.2 X 3.2 X 3.4	-	SEWAGE DISPOSAL CAISSON (1ND)	HOLD


Completed Studies – Substructure Options **SAGE**

			7	Fechnica	I Driver	S		Comr	Overall						
Substructure Type	Water Depth Range	Payload	Metocean - Environment	Riser Feasibility	Offshore Integration	Active Seismic ممتنمی	Score	Ranking	Reuse of Existing	Maximise Indian	Flexibility for Future Euronaion	Score	Ranking	Score	Ranking
Semi Submersible	3	3	3	2	3	3	17	2	3	2	2	7	1	24	1
Tension Leg Platform	3	3	3	3	3	3	18	1	1	2	1	4	2	22	2
Fixed Jacket	3	3	3	3	1	2	15	4	1	3	3	7	1	22	2
Spar	3	3	3	3	1	3	16	3	1	1	1	3	3	19	3
Compliant Tower	2	3	3	3	1	3	15	4	1	1	1	3	3	19	3



SAGE

Peritus Difficulty Index for Deep Pipelay

36

Peritus Existing Pipelay Vessels in Operation

Saipem S7000 (operational since 1999)

- Carrying capacity of 15,000t, Full dynamic positioning
- Layrate of up to 5km a day.
- Deepwater pipelay record of 2,200m (7,218').
- Holding capacity force of 2,000tonnes

HMC Balder (operational since 2001)

- Carrying capacity of 8,000t, Full dynamic positioning
- Layrate of up to 4km a day.
- Deepwater pipelay record of 2,743m (9,000').
- Holding capacity force of 1,210 tonnes

Allseas Solitaire (operational since 1998)

- Carrying capacity of 22000 t, Full dynamic positioning
- Layrate of up to 9 km a day with in-house Phoenix automatic welding system.
- Deepwater pipelay record of 2775 m (9100').
- Holding capacity force of 1050 tonnes

Peritus New Pipelay Vessels under Construction

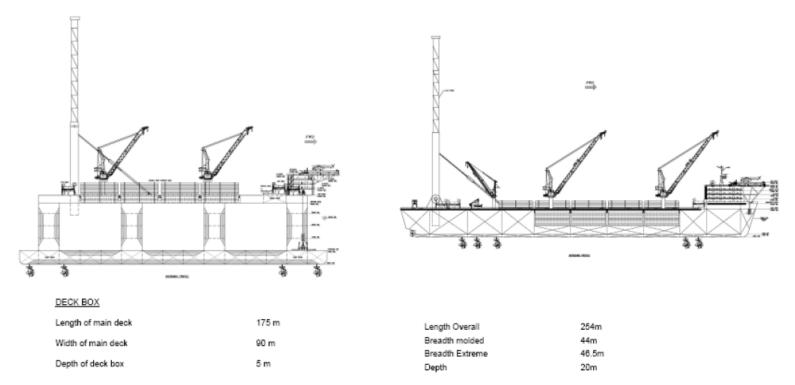
Saipem SpA new laybarge CastorONE

- Under construction in Singapore
- Ready for offshore operations early in 2012. Saipem has confirmed that the MEIDP is feasible and can be installed in a water depth of 3500m

HMC new Build vessel Aegir

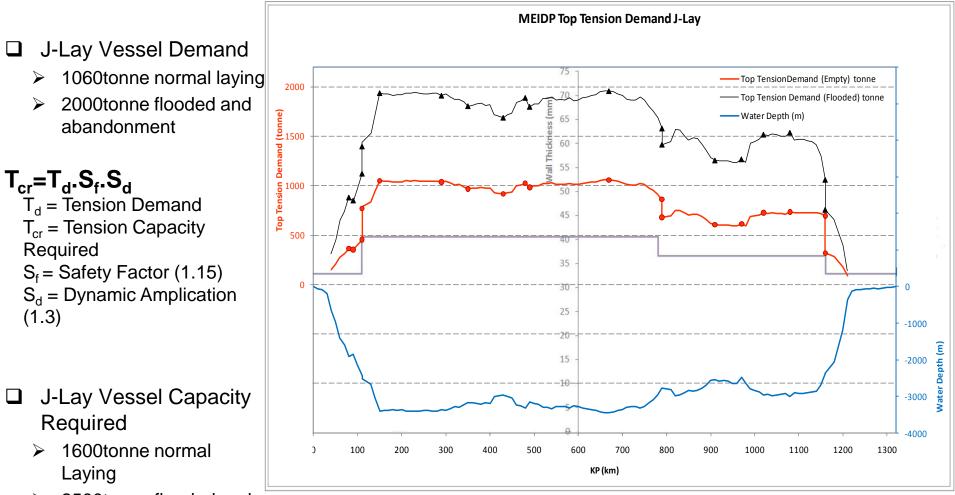
- Under construction in S. Korea
- proposed to be complete by mid 2013, ready for offshore operations early in 2014

Allseas new build vessel Pieter Schelte


- Under construction in S. Korea
- Proposed to be complete by end 2013, ready for offshore operations in 2014

Dimensions & Displacements (Semi Hull)

Dimensions & Displacements (Ship Shape)


SAGE

CAPEX for any such barge is around \$850m.

SAGE would need to set up full PMC team - but multiple lines possible for a corridor.

SAGE

2500tonne flooded and abandonment 40

Peritus

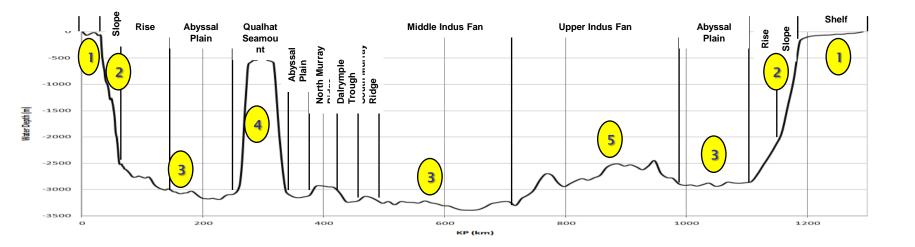
Vessel Capability to meet MEIDP SAGE

ЭС
Ъ
N
p
Ľ

Contractor	Pipe-	Vessel Name	MEIDP Size OD Requirement	Vessel Maximum Size OD	Demand Top Tension	Vessel Capacity Requirement	Vessel Capacity
	lay Mode		in	in	tonn e	tonn e	tonn e
Saipem	J-Lay	7000	27.2	32	1075	1607	2000
Salpein		CastorOne	27.2	36			2000
нмс		Balder	27.2	32			1210
		Aegir	27.2	32			1500
Saipem		CastorOne	27.2	36			750
Allseas	S-Lay	Pieter Schelte	27.2	68	1288	1925	2000
Allseas		Solitaire	27.2	60			1050

	Contractor	Pipe-	Vessel	Demand Top Tension	Vessel Capacity Requirement (DTT*1.3)	Vessel Capacity ¹	Assumed Vessel Capacity
-		lay Mode	Name	tonn e	tonn e	tonn e	tonn e
Γ	Saipem	- J-Lay	7000	1993 2		2000	2000
	HMC		CastorOne		2591	2500	2500
Γ			Balder			N/A	1500
			Aegir			N/A	1875
Γ	Saipem		CastorOne	2781		975	975
ſ		eas S-Lay	Pieter		3615	2000	2500
	Allseas		Schelte				1000
L			Solitaire			N/A	1300

Flooded Pipe

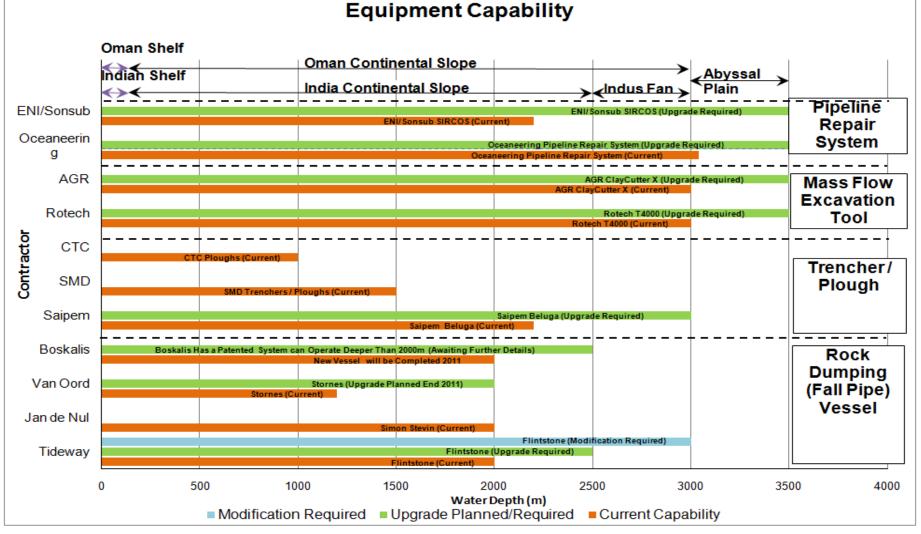

41

The route has been divided into five different intervention requirement zones.

- 1) Shallow Water Zone (0 to 150m WD)
- 2) Continental Slope Zone (150m to 2500m WD)
- 3) Deep Water Section (2500m to 3500m WD)
- 4) Remote Seamount Section (300m to 3000m WD)
- 5) Indus Fan Section (2500m to 3000m WD)

September 2011

Zone	Location	Soil Properties Summary	
	Oman Continental Shelf	Sands, gravel, reefs and outcrops of limestone, igneous/metamorphic rocks, calcareous silts and well-sorted sands	
1	India Continental Shelf	Quartz and heavy mineral sands, dark yellowish brown to olive grey silt, clay with shell fragments, light olive grey carbonate sand (oolitic sand) and algal and oolite limestones (or calcarenites)	
	Oman Continental Slope	Olive brown to olive grey very soft to soft pelagic silt and clay	
2	India Continental Slope	Dark yellowish brown to olive grey fine grained cohesive soils, i.e. silts and clays with shell fragments	
3a	Abyssal Plain and Lower Indus Fan	Pelagic sediment of greenish grey to olive grey very soft to soft clay and silt	
3b	Owen Fracture	Dark yellowish brown to greenish grey to olive grey very soft to soft pelagic clay and silt	
4	Remote Seamount	Dark yellowish brown to greenish grey to olive grey very soft to soft pelagic clay and silt	
5	Indus Fan	Yellowish brown to olive grey very soft to soft clay and silt	

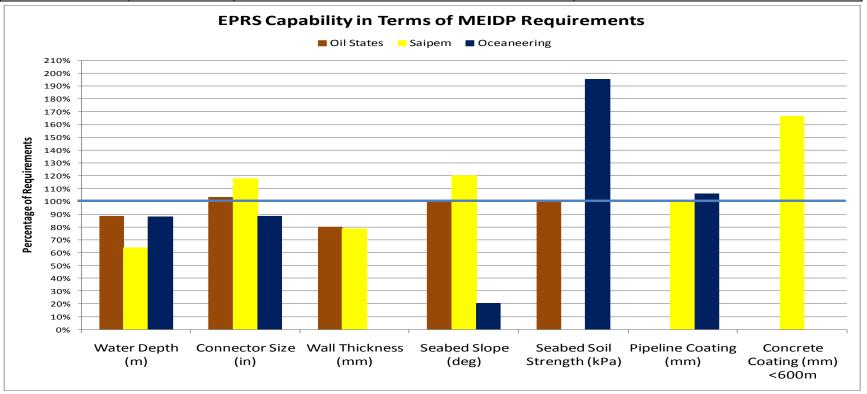

The results of an initial study based on a limited survey of potential contractors indicates that the following capabilities apply now and potentially in the future

Equipment Type	Depth Requirement	Survey Results	Equipment Modification Plan
Dredging Vessel	Up to 30m	Variety of dredgers available in the market can dredge up to 30m WD	Not Required
Rock Dumping (Fall Pipe) Vessel	Up to 3500m	Current max. working depth is 2000m. Following are currently most capable vessels in the market can work up to 2000m. <u>Simon Stevin</u> (Jan de Nul) <u>Flintstone</u> (Tideway) – new vessel, to be operational from May 2011 <u>Unknown Name</u> (Boskalis) – new vessel, to be completed in 2011 <u>Stornes</u> (Van Oord) – new vessel, to be operational from March 2011 with depth limit of 1200m. Upgrade is planned to bring the working depth to 2000m by end of 2011.	<u>Tideway</u> indicates modification to bring working limit to 3500m is possible and that could be planned and ready for 2015. <u>Jan de Nul</u> and <u>Van Oord</u> indicate major issues of extending the working depth to 3500m is the vessel structure must be adequate to support the increased fall pipe weight; vessel must also have enough space to store the extra fall pipes. These issues shall be looked at and qualification may be required to verify the design as this is a major step change.
Plough (Trenching)	Up to 3000m	Most ploughs currently only able to work up to 1000m	Cannot be upgraded to 3000m as it is too deep for this mode of trenching technique.
Trenching Machine		Most trenchers are rated up to 1500m. However, Saipem's <u>Beluga</u> can work up to 2200m.	Saipem indicates Beluga can be upgraded for higher water depth
Mass Flow Excavation Tool (Trenching)		Rotech and AGR indicate their excavation tools are rated up to 3000m. <u>T4000</u> (Rotech) & <u>ClayCutterX</u> (AGR)	Both <u>Rotech</u> and <u>AGR</u> indicate modification to bring the working depth to 3500m is possible (if required), though design and deployment will need to be looked at.

Peritus

Peritus Intervention Vessels & Equipment Capabilities

45



Equipment Name	Main Contractor / Operator				
Bespoke Systems					
Chevron Petronius Repair System	Oil States / Chevron				
BP Mardi Gras Pipeline Repair System	Oil States / BP				
SiRCoS	ENI / Saipem				
Pipeline Connection and Repair Systems (PCRS)	Oceaneering				
Total Girassol Pipeline Repair System	Subsea 7				
Repair Clubs					
Shell Deepwater Pipeline Repair System	Shell HOLD (there are two version of the Shell club?)				
DW RUPE	DW RUPE				
Pipeline Repair System Pool	Technip (Norway), Deep Ocean, Statoil				
Newly Founded Repair Clubs					
Emergency Pipeline Repair Equipment Sharing	South East Asia Pipeline Operators Group				
(EPRES)	(SEAPOG)				
	Pipeline Repair Operators Forum Australasia				
	(PROFA)				

Pipeline Repair Systems	Up to 3500m	Sonsub's SIRCOS currently can work up to 2200m	Saipem indicates it can be upgraded for higher water depths
		<u>Deepwater Pipeline Repair System</u> from Oceaneering and Oil States currently rated to about 3000m.	Oceaneering indicates depth requirement of 3500m can be designed and manufactured Oil States indicates further tests are required to re-qualify their system for 3500m rating

Castorone Visit

 A visit to see Saipems new Ultra deepwater Installation Vessel the CastorOne in Singapore took place in May.

- Saipem spa has confirmed that the SAGE deepwater pipeline is feasible and can be installed into water 3500m deep using its new laybarge CastorONE, currently in construction at Keppel in Singapore.
- An MOU under which Saipem will join the SAGE Consortium has been signed.

CLASSIFICATION

ABS +A1 (E), pipelaying vessel, +ACCU, +DPS3, CRC, TCM, CM, ice class A0 (IA Baltic)

DIMENSIONS

Length (o.a.): 330 m excluding ramp/stinger and helideck Moulded breadth: 39 m Operational draft: min. 7 m, max.10 m Transit draft: 8 m approx. Displacement: 100,000 t at max. operational draft

PERFORMANCE

Transit speed: 13 knots Fuel consumption (transit): 80 t/day Fuel consumption (DP mode, max.): 130 t/day Bollard pull (with main propellers): 180 t Pipelaying capacity: triple joint 12 m or double joint 18 m; pipe size up to 48" (60" including coating)

CARGO/TANK CAPACITY

Clear deck area: 4,300 sq.m Fuel oil: 6,500 cu.m Fresh water: 1,500 cu.m Ballast water: 36,000 cu.m 15,000 t pipe storage in cargo holds

DECK EQUIPMENT

Main crane: 600 t @ 30 m, 350 t @ 46 m Pipe handling cranes: 2 x gantry cranes 52 t @ 35 m Pedestal crane: 30 t @ 30m S-Lay stern ramp: 120 m long hinged stinger composed of 3 articulated and adjustable sections Tensioners: 3 x 250 t

A/R winch: 750 t Working stations: 3 welding + 4 completion Triple joint fabriction shop below deck ROVs: 2 Work Class ROVs rated for 3,000 m of water depth

PROPULSION SYSTEM

Main gensets: 8 x 8,400 kW at 600 rpm each Emergency generator: 1 x 1,200 kW Power distribution: 2 separate switchboards 11 kV Main shafts: 2 x 8,000 kW Azimuthal thrusters: 6 x 92 t Bow tunnel thrusters: 2 x 35 t Stern tunnel thrusters: 35 t

ACCOMMODATION

702 persons Mess room; offices; crew lifts; meeting rooms; gymnasium/recreation; television rooms

DYNAMIC POSITIONING SYSTEM

DP system: fully redundant, class 3 Reference system: 2 x Hipap 500 for 3,000 m of water depth; 2 x DGPS Taut wire

HELIDECK

Suitable for Sikorsky S-61 N

J-LAY TOWER

Features for future installation of a fixed tower for pipe laying in J mode through the centre moon pool

September 2011

CastorOne Visit

A visit to see Saipems new Ultra deepwater Installation Vessel the CastorOne in Singapore took place in May and included representatives from GAIL; EIL; Peritus & SAGE.

September 2011